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ABSTRACT: First-order logic Is extended so as to deal with typed 
theories! especially tt)at of continuous 'unctions with 
fixed-point Induction formalized by D, Soott, The translation 
of his formal system, or the X calculus-oriented system 
derived and Implemented by R. Mlinen Into this logic 
amounts to adding predicate calculus features to them, 

In such a logic the fixed-point Induction axioms are no 
longer valid, in general» so that wa characterize formulas 
for which Scott-type Induction Is applicable, In terms of 
syntax which can be checked by machines automatically. 
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AdirIsslbi I lty of Fixed-Point Induction In Flpat-Ordtr LOfllo 
Of Typed Theories 

by 

Shlgepu Igapashl 
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This point wl|l be explained more concretely. Suppose f and g 

continuous partial functions. The predicate fig! where the 
lty means the "strong equality", I.e., If one side Is undefined 
s the other, Is not continuous. But as In Scott's logic we can 
Ixed-point induction In order to prove this equality. Then 
will happen to the following formula which we are going to allow 
e Intended logic? 

Vx(f(r)=a-Q(x)=h(x)), 

with the axiom 



fsMIn XfXxJff.x), 

*  being 
f ixed-ooInt 
tertr  In LCF,  it turns out 
expression J(f,x) are continuous! 

mpllcatlon  In  the  classical  sense,  M 
of the function to which It is Prefixed, 

that if all the functions 
whlcn condition Is 

n the minimal 
and J(f,x)  a 

like a ooo lean function, then we can apply 
without incurring Inconsistency, 
functions, m fact the continuity 
case, for flxed-oolnt Induction 
conditions are satisfied, 

fixed-point  Induotlon 
even if g and n are non-contInunus 
of g and h does not matter In this 
•s not sound unless the above 

for 
we 

which 
shall give a syntactic characterization of  the  formulas 

automatical vlh^hl^J^r'0".18 Tnd' s0 thftt ««hlnaji „n check autoiraxicai |y whether or not a given formula admits application 
the inference rule corresponding to f|xed-point Induct?" 

of 

First-Order Lofllc of Typed Theories 

'; 

we consider a kind of 
logic In the classical sensetlZ], 
usual sense together with  functions 
defined  functions,     Each  type 
objects are typed, and we do 

nflnitejy many-sorted first-order 
The objects are Individuals In the 

•n^vlduals or previously 
regarded as a sort, Only 

of 
can be 

not consider predicate vartahia« TK» 
Intended formal system wl|| be abovevlated r^'^ies. The 
partially follow shoenfle|d's styledij, 

as FUT, we shalI 

2,1  Language 

Types 

Al,    We presuppose that there 
"base types",   Some of the are a number  of types called the 

base types can be "ordered types".  Types 
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n    -♦,. and the odered typos are postflxed by the 
are denoted by a, P, etc.i tt",;ai,® ,h,!, between « and «o ar» assumed 
,etter "o%  ''^ "»  ^ i!1;^ jJiS^  Tm! oth.? than thl base 
If both a and «o happen to be ease xyp«s.  i»w 
types are called the "function types . 

A2     If  a and 0 are types, so Is -P.  Both «1-2* -  '■^ "* 
al, -2. ...  .ar^ are used as the abbreviations of  el^^(  ... 

*(an■•t,) . . . J J • 
(3o are types, which must be ordered types, so Is If  «o  and 

(<,'0^0>0,       . .K-c rnnstructlon we can consistent y abbrsvltte 
0ecaus3 of this ""'^ uc:'°n, „g^nce. («o-<Po*(Po-ßo)o)o>o Is 

M0«S  except the outmost one.  For Instance, < v 
bbrevlated by (a^P*P-»P)o, 

AIphapet 

,.c,„,t.nt.      ana       «-»a;^ Js
t.  .^ t.nU \or   ..ch  n-tuola   d,   ... 

= ( , ) - v 1 Mln 

ral defined symbols whloh are standard  In 
we shalI use sevei 

logic as follows. 

The .mol • stand, for I-.011 cat 1 on. and i for logloal aoulval  

Thus "'.ans function In tn. t.xt and Imolloatlon In formulas. 

Terirs 

B1     ,f  a  Is an «-constant, then a Is an «-term, 

a-varlable, then x is an «-term, 

If x Is an 

B2.    I* * 
P-term, 
t(u»v). 

U an .-U-t.r« and u Is an -tarm,  than tlu)  Is a 
,lu) can ba also «rltt.n as <t M). and (t(u).(y. as 



53,    If t is an (ao-,ao)o-term, then Min t Is an «o-tarm, 

B4«    If t Is an oo-tann and «o Is a function typai than t  Is an 

Fornulas 

Cl.    If t and u are «-terms» then t=u Is a formula, 

c2« If P is an («1, .,, ,on>-pred|cat8 that Is different rom «, 
and tl Is an «l-term for each I (l<l<n) , then p(tl» ,,, ,tn) I« a 
foriruU, 

C3,     If A Is a formula, then ^A |s a formula, 

c4'    If A and 5 are formulas, than AVR, ASB, and A-»B are formulas, 

c5. If A is a formula and x Is an «-variable, then VxA and 3XA 
are f orrru las, 

2,2  Interpretation 

we choose a non-ömpty sat ül<*), or U«, for each base type a 
as the domain of individuals of type «, if o is an ordered base 
type, we assume further that D« is an ordered set (L. S) satisfying 
the following conditions, 

(l> (Li i) has the least element, I.e. inf L, which shall be denoted 
by C. 

(ID (L, <) Is an --Inductively ordered set in that L Is non-empty 
and every non-empty countable set x such that X«!. and x Is iJnearly 
ordered has sup X In L, 

That L is non-emoty Is a part  of  the standard definition of the 
Inductively ordered  set,  which  Is automatically satisfied In this 
case. The symbol "-" reads "omega" through out this paper. In some 
case, It can be read "a|eph naught", 

Suppose D« and D^ have been defined, we let DC«*f3] be the 
set of all the functions of D« I to Dp, If « and p are ordered type, 
we 'et UC(«-f3)o_] Da the set of a|l the —continuous functions 
belonging to DC«-»f3] together with the order relation < defined by 

f<g Iff f(x)<g(x) for any xfD«, 

where the --continuity is defined as follows. 



Definition,  A "sequence" X In a set L Is a function of  the set of 
the positive  Integers Into L» Xn denoting the n«.th term X(n), X 
is written as (Xn) sometl-nrs, A "monotone Increasing" seautnoe X 
in (L. <) Is a sequence In (L« <) such that 

XI < X2 < ... < xn < .,, 

f Is " —ocntinuous*' iff 

f(8UP X) s gup f(X)» 

for any monotone increasing sequence X in (u, <), where f<X> denotes 

the set (Mx) Ix^X), 

Remark, f Is --cont I fiuous In th|s sense Iff fCsup X) * SUD f(X) 
for any countable directed set XcLt (See section 3.) This property 
will be called the --continuity» while a stronger definition of 
continuity is that Msup X) s sup f(X) for any directed set XcL« ' I« 
salo to be "monotone" Iff f(x)SfCy) whenever xSy, The -«continuity 
implPas the monotonicity, which can be shown as followsClß], 

Suppose xsy, Let xi be x and Xn be y for any n22, so that X is a 

monotone Increasing sequence, By --continuity, f(sup X) « SUP f(X>, 
But sup Xsy, and f(x) < sup t(X),  Therefore f(x) < My), 

by this construction 0ao can be shown to satisfy the 
concitions (i) and (11), so that the Inductive definition works. In 
fact, the function g: D«o*Dpo such that 

g(x) = 0  for any xeD«o 
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eacn a-constant a In FLT Is associated an element a* of 
(al, .«, ,an)-pred|cate p In FLT Is associated an 
P» in Dal« •., »Dan. Such a collection of Do's will be 

and FLMD) will denote the language obtained from FLT 
ew «-constant» called a "name", for each element of D«» 

i is "closed" if no variables occur free In It, 
variable-free term is closed In this sense, we use 
>gy becaouse we shell extend the syntax of terms later 
ixlomatize LCF» |n which Xxx Is a closed term» though It 
le-fpee, We define an «-individual »t for eech closed 
iductlon on terms. 
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D2'    *♦ * ,s u(v), then u must be a closed oip-term and v a closed 
«-term, so that irufDC«-«?3 and wvtD«»,   Me let ir(u(v)> be »uCtv ). 
03«    If t 's Mln u. then u must be a closed (oo*oo)o-tfpirn so that 
• u |s an --continuous function of tyoe «o-'O'Oi Let f denote »u,  We 
let »t ba |nf<x|f(x).x) (with reSDect to the ofderlnfl of «0)1 n«m,|y 
the |east fixed Polnt 0f f, which ls 8h0wn to «xlst as followsC103' 

Let f1n,x denote 

UK   ,,,   f(x),,,)) (f occurs n tlnesJi 

for  each  n>0,  Esoeclally.  f.B.x  Is x,   Then sup(f,n,0>,  or 
SUDU,n,o|0Sn<-} strictly, Is in fact Inf(xjf{x)Bx>, BV "-oontInulty, 

f(subff,n,0)) = suD(f(f.n.O)) 
= sup<f .(n+D.O) 
s sup{f.n.0|lSn<-J 
S 8UP(f,n,0/| 

By nronotoniclty (see the above remark), 

suD(f,n.O)  <  f(3up(f,n.O?). 
Thus 

f(SuD(f.n,0>> = sup(f,n.0); 

Namely sup(f,n,o) is a fixed point of f. Let a be an element of 0«o 
such that t(a>=a.  slnce 0<a, f(0)<f(a)=a, by nonotonlcJty,  Than, by 
mathematical Induction, f.n.QSa for any n, so that 8Up(f.n.OJSa. Thus 
sup(fln,0>=inf(x|f(x)sx)t **'*** 
D4'    If t Is a closed «o-term and 00 is not a base typt, than wte 
Doo and notocQai, so that irteü«. 

"false". 
A  truth  value  is  either  T  or F, T means ,,true,, and F 

A formula is "dosed" if no variables oöcur free In It, We 
define a truth va|ue »A for each closed formula A In FLT(O) by 
Induction 00 formulas, AC j# or tC 3, denotes a formula, or a term, 
with voids, and ACx], or tCx], results of replacing them by x. 

E1«    If  A  ls  t=u,  then  t and  u must be closed «-terms for a 
certain a, since A is closed,  We let 

*A-J    Iff »tsiru, 

E2,    if A is p(ti, ... ,tn) wnere p is different from s, we let 

irA = T Iff p«(tl, ,, , ,tn) , 
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E3, 

E5. 

If A is -Bi then we let 

»AST Iff irB = r, 

If A Is BvC, then we |et 

»A=T Iff »BaT Op »CaT, 

If A is 3x8cx3 and x |s an «-variable, then BCa]  Is closed 
for each a-name a,  Me let 

»A = T Iff ir(BCa])sT fop some «-name a, 

A "D-instance" of a formula ACxi, ,,, ,xn] of FLT Is a closed 
foriruja of the form ACal anj in FLKD). whepa al Is an «l-name 
If J Is an «i.variable (lSl<n). A formu|a A of FLT Is "vaI Id» In 0 
If »A «T fop every 0-|nstance A' of A. In particular, a closed forrrufa A of FLT is valid Iff n^T, Marx.cuiar,  a closed 

2,3  Truth functions associated with formulas 

To study the properties of formulas we shal 
funct ions,  namely  ' 
F,  associated 
convenience   01 
tertr I no log 1 es. 

consider  truth 
tely functions whose values are the truth values T and 
with formulas  in the natural  mannep,  For  the 

f  the  latep  description we use the  following 

Let x be an «-variable, and ACx] a fopmula In which at most x 
occurs free,   since ACaJ is a closed fromula for each « 
can  def '     ' 
v 
I 
by 

. ., . . m*** >- » Viva»« •rumuici TOT eacn «-name a. w« 
an def ne a function f. 0«-<T.F) that stands each a* onto the truth 
alue .ACaJ. f Is called "the truth function detepmlned by A and x 
n D",  or. If there Is no ambiguity, "the truth funStIon ditefmlneS 

xl, 1»• 

Let ACxi, ,,,  #xn] be a formula In which at most  variables 
.  xn,  respectively of type «1, ,.,  , «n, occur frs«,  A 

f^'Ji :,??!?nCe 0f AfxJ x^ ln FLT ls a formula In FLT(D)  of the forr ACal. ... .a( 1-1),xI,a(l+l) »n^ where al, ".an are 

that are  (D,x I).instances of a formula (l<|<n),    Therefore each 
(Q,xi)-instance determines a truth function, innperop. eacn 

ACxi, ,,, ,Xn3 also "detepminas" an n-apy truth  function fj 
!lp^r^,, *Dian;     •* ^ F) that 8,nds eaoh n-tupie (al., ,,, ,an*) onto »ACal, ,,, ,an]. ' •" ' n ' 



2,4 Logical axioms and rules 

i 

We shall accept the following axioms and rules for FLT, 

Rule of 
arbl tra 
yli zli 
v* and 
an arbl 
restr lo 
forrrula 
free, 
that on 
syntact 
deflnlt 
tn sect 

substI tut! 
ry varlabi 
••t  , Xn» 
s» an arbi 

trary formu 
tlons that 
s and that 
On the Ind 
ly those fo 
leal Iy" ar 
Ion of form 
Ion 6,1, 

on. in the below schemata of axioms or rules, 
es can be substituted In place of a, x, y, z, «i, 
yni zn» and w, arb|trary terms In pl«oe of t» u. 
trary n.ary Dredlcate In plao« .f p VsJoh n, and 
la In place of A,  B, and C, subject to the 
the results of substitutions should be well-formed 

any free occurrence of variables should be Kept 
uctlon axiom are Imposed the additional restriction 
rmulas Jj the form AC 3 that "admit Induction 
e substituted In place of AC 3, The effektive 
ujas that admit  Induction syntactically  Is given 

» 

' 

Logical axioms 

U 

prepositional axiom, 

Identity axiom, 

equaIity ax lorn, 

xl = yi 

statlonarIness axiom. 

Induction axiom. 

Rules of Inference, 

"AvA, 

xsx, 

Xsy *   zaw - xCZjsyCwJ, 

x = y ■• M|n x s Min y, 

,,, - xnsyn - pCxl, ,.. ,xn) - p(yi, ,,, #yn), 

x(Mln x) s H|n x, 

AC0J-vy(ACy.2-ACx(y)])*ACMIn x], 

we shall accept all the  rules  In Gentzen's 
I«Jfn. +

0I  ^I'^81  c,educt,or'C13..  or Nj.  with the fo owing 
modification of the ouantIfIer-1ntroduction and elimination rules 
(a designates a variable In this section.) rui.s. 

) 

1 

V-IntroauctIon rule, 

ACaJ 

VxACx] 
<a> 

v-elImlnatlon rule, 

VxACx] 

ACt3 



3-introductlon rule 

ACtJ 

3xACx3 

ctIon« 

3-e|imtnttlon rule, 

ixAtx] 
(ACal) 

C 
<a> 

rule and the 3-Introduotlon rule, 

n the orlglna 

free variable substituted In 
exDlldtly  aeslgnated  by 
y-Introduction rule the free 
the  formula  designated 
that formula, 

P 

NJ» that the 
the places 

<a>  indicates  the restrIctlon, 
ace of a occurs only  'n 
a,   Tnus,  for  Instance,  in the 

replacing a must not occur  in 
n any assumption formula of by 

varI ab|e 
yxAOO, nor 

use ( ), stead of C 3  In 
As appears 

Tol   carHeS'beycnd tne car. **•""'*'   ^  a«umptlon formula *<   B' ^J 
as «ell  as ( ), to denote that A is    ..sequent". In the sense of 
Al. ... • *»  ""Mi'i^Unce? tSe Elimination rule can be expressed Gentzen's LK.   For Instance, xne    i ^ ^   s$QUt| f0r 
In the following ways, and we snan us« «i 
the convenience of description, 

v-eIimi nation rule. 

AvB 
(A) 
C 

(B) 
C 

Infer C from AvB, A—C. and B--C, 

Infer P C from P --•• AvB, A#p ..4 c, and  B,P C, 

An inference rule 
sequent from other sequents 
A sequent of the form Al, .•• 

0f the last form. I.e. a rule to Infer e 
s called a "relativised" Inference rule, 
,Am ---♦ aii ,.. »Bn Is •val Id In D" Iff 

A sequanx or mo .wr- -*' ••• •        «• i M  In  D    A  re ax vizeo 

D. 

A  relativized 
valId In 

In 0,  for any 



H6 oan treat t^e logical axioms In the form of Inference 
rU|es, MO list them In the generalized forms for the ortetlctl 
derivation, These rules are derived rules actually, 

propoaltlonal rule, Identity rule, 

- 

«AvA 

equai Ity ru je, 

tsu    ACc] 

t«t 

stationäriness rule. 

ACu3 t(Hln tJsMln t 
i 

Induction rule, 
A[0J ACa]-ACt(a)j 

<a> 
ACM ln t3. 

described above, 
not occur free In 

Thus the 
ACMln t3. 

<a>  Indicates the same restriction as described above 
variable substituted In place of a must not occur free 
nor In ACOJ» nor In any assumption formula of ACMln t], 

Apparently the Induction axiom, or rule, Is not acceptable 
unless some adeauato restriction, like the one Indicated In the rule 
of substitution, is Imposed on It, First, In order to Instantiate 
this axiom by a name b, substituting b In place of x, „b must be 
—continuous so that Scott-type fixed point Induction makes sense, 
which restriction Is satisfied In the present formalism, for Min b Is 
not a well-formed terr otherwise, Second, even If Min b represents an 
—continuous function of an appropriate type, there exist many 
forirulas which make this axiom net valid. The main purpose of this 
paper Is to.character Ize those formulas for which the Induction axiom 
Is vaMa. so that they admit the application of this ru|e, 

ü 

i 

i 
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Weakly Continuous Functions 

3.1 Definition, 
"convergent" Iff 

sequence a  complete  lattice L'  Is 

1'minf X = IImsur X, 

In such a case we define I In x oy 

1in X = | Inlnf X 
« I Imsup X. 

^1 < X2 < .,. < XM .- X(M+1) . ... s X(M+n) » ... 

In the latter case x Is said to be "sem|-fin Ite", 

s'iquencTmxnn ^   *   be a fu"cti°" »-t. f: L-U'.  f(x, sequence (fCXn)), is convergent for any seni-finlti x) ani • .  the 

In MX) 8 f(SUp X)# 

Proof,  Apparently 

H 



I im f (X-, = f(XM) and XM = SUp x, 

where M satisfies the condition of definition 3.2. 

3,3 Hpoposltlon.    let     t 
--continuous Iff 

be  a  function  s.t,  f; L-»L', 

ftSUp X) s SUp f<v)| 

for any countable directed set X s.t. XcLt 

SUP Y s sup X, 

Suppose f |S -continuous,  Then, by -continuity, 

f(Sup Y> = sup f(Y), 

SUP f(Y) S sup f(X), 

V c X. 

But 

since 

Thus 
f(SUP X) s f(Sup Y) 

■ sup f{Y) 
S sup f(X), 

By .ronotonlclty (gee the remark m section 2.2), 

Mx) $  f(gup x)       for any xex. 
s Ince 

so that 

Therefore 

x < SUP X, 

SUP f(X) < f(sup X). 

'(SUP X) s sup f(x). 

'(SUP X) = |im f(X), 

for every ascending chain X In L. (This relationship lmp|It8 thftt , lm 
f(X) exists, for the left hand side always exists,) 

3.5 Proposition.  f is weakly continuous iff 

f(SUP X) i   |im f(X) • > 
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for any quasi-ascending chain X, 

Prooff  Apparent fro" Proposition 3,2, 

3,6  Theoren.   f  Is --continuous  Iff  f  Is weakly continuous and 
monotone. 

Proof,  necessity:  suppose  f is --continuous,  Then f Is monotone, 

so that for any ascending chain x 

Therefore 

3y --centinultyi 

f(XI) < f(X2) < ., . 

SUP f(X) -   1 Im f(X), 

30 that 
f(su0 X) s sup MX), 

f(SUP X) s iIm f(X), 

sufficiency?   Let X be an quasI-ascendIng chain,  We have to show 

f(SUP X) = sup f(X), 

9y weak continuity» 

f(SUP X) a iim f(X), 

and, by monoton I city» 

1 Im f(X) « sup f(X), 

f(SUP X) s sup f(X). 
so that 

3.7 Theorem,   f  Is weakly continuous  Iff  for  any --continuous 
function g: L"*L the following relationship holds, 

f (Mm g) s lim f (g.n.O)» 

where Min  3 denotes the least fixed point of g, i,e, Inf(xIg(x)sx), 

which can be expressed as sup(g,ntü} (see section 2.2.) 

We need the following lemma In ordsr   to prove this theorem, 

3.8 Lerrma,  Let X be a quas l-asend I ng chain In Li  Then there exists 

an --continuous function fs L"»L s,t, 

f.n.O s xn     for any n. 

13 



Proof of lenma, The following construction suffices. 

f(x) =  XI, 
X(n+1), 

SUP X, 

(This construction was given by R, Mliner.) 

xsu; 
xj«a and x<xi does not hold for any t 
s.t, i<n-l, and xSXn hojds (nil)» 
x<Xn does not hold for any n. 

Proof of theorem 3,7, necessity? Suppose g Is --contInuousi then 

Mings sup(g,n,0), 

(g.n.u) is a quasl-ascendIng chain, so that by weak continuity 

f(Min g) = I Im f(g.n.O), 

sufficiency: Let x be a quasI-ascendlng chain In L.  Then by Itmma 

3.3 there exists an —continuous function g s,t, 

assure 

Me note that 

and 

Therefore 

g,n,0 = Xn. 

f(Min g) s I Im fCg,n,0>» 

Min g s sup X 

iIm f(g.n.O) = I im f(X), 

f(SUP X) s 1 im f(X), 

3.9 Theorem,  f Is weakly continuous iff 

I Iriisup f (X) = f (sup X)       ' 

for every ascending chain X In L, 

Proof, The necessity Is trivial, so that we prove «he sufficiency. 

Let X be an ascendinfl chain in L,  we orove that 

Iiminf f(X) = IImsup f(X) 

follows tne latter condition of t^e theorem. Let a and b denote 
jlmlnf f(x) and Itmsup f(X). respectively, Me prove a»b. W« can 
choose a subsequence Y of X s.t, 

1 im f(Y) = a, 

since a is limlnf f(X),  Then, by definition, 

Iimsup f(Y) = a, 

14 



Wt not") that Y Is also an ascending chain In L» so that 

Iimsyp f(Y) s f(sup Y) 

by the supposition o^ the theorem,  Sjnce Y Is coflnal In X, 

SUP Y s SUP X, 

f(suP Y) s Msup X), 

f(SuO X) a b 

again by tna supposition of the theorem.  Thus 

IImsuo f(Y) = b. 

so that 

But 

Namely, 
a = b, 

Admlsslbllity of Flxeo-Polnt Induction 

We shall discuss properties of Predicates) For the 
convenience of mathematical description we introduce the ordering of 
truth vilues such as 

F < T. 

This ordering Is outside our logic, and It must be noted that the 

concept of weak continuity of predicates as well as that of 
admlssibiIIty of induction Introduced below can be stated without 
referring to this ordering (sea 4,6 below), though It makes seme 
argunrents more understandable, 

Since we considered total predicates when we Interpreted 
fortrulas, the concept of monotonlclty or —continuity hat little 
Importance as long as we assume T and F are not comparable with each 
other, For, t^en, the only monotone or continuous predicates are 
the ioentloally true predicate and the identically false one, We 
shall use, however, the concepts of monotonlclty and continuity of 
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Dredlcates with rescect to the above ordering.  Th 
mainly related to the existential quantifier. *99    oonctpts are 

f7 S   T. 

4.2 Definition, A -truth function" on L Is a function s.t. 

L-»T0. 

a) A truth function f "admits Induction weakly Iff 

f(g.n.O) = T for every n (n>55) |rnp||es f(Mln g) . T, 

Esoeclaiiy, f(x) admits Induction weakly if f(O) s f 
b) A truth function f on L. "admits Induction strongly" Iff 

I im f(g,n.O) ■ T Impl|es f(Mln g) s T, 

4.3 Prooosltlon.  Let X denote an ascending cnaln In L, and f a truth 
function on L. " vruxh 
a) f adnrlts Induction weakly iff 

f(Xn) = T for every n (0Sn) Implies f(sup X> a j, 
for any X. 
b)^ ad.lts induction strong,y |f f adm(ts Induot!on MMkJy ^ f(0) 

c) The following cond|tIons are equlvaient to e.ch other. 

<i)    f admits Induction strongly, 

«">   ll"'(X) s „.„px,    for .„y acndin, ch.|n x for -hi.. 

OH.  M^upfx, SM,u.X, lor ^'„'^n, ch.,„ x. 

br0^«."""" " th9 Dr00' " X""'n  '•' "'"• I«««. 3.8. 

Then 

»c-os« 

I im f(X) s T. 

f(Xn) = T for Plmost every n, (see 4,6) 

so that we can choose a ouasi-ascendlng subchain Ym of X s.t, 

16 



Yl « 0 and  MYm) = T  for every m, 

By weak adtnlsstbl I I tVi 

f(sup Y) = T. 

By cot Ina | I Ityt 

f(süp X) = T. 

c)  be prove that  (I)  Implies (Ml)»  the rest being left to the 

reaoer,  Suppose 

I imsup f(X) 1 f(sup X), 

If llmsup f(X) = r» then Mm f(X) = r, so that 

|im f(X) < f(sup X). 

Suppose 
IImsup f(X) = T, 

Then we can choose a^ ascending subchaln Y of X Sit^ 

I im f(Y) = T, 

By cof Inal Mty of Y in X» 

SUP Y = SUP X, 

and» by strong admlsslbiMty» 

f(sup Y> = T. 

Thus 
I imsup f(X) a f(sup X). 

4,5 Theorem,  Of  the following conditions the upoar ones are 
implieo by the lower ones, 

(i) f admits induction weakly, 
(ii) f admits induction strongly, 
(iii) f Is weakly continuous» 
(i v) f Is --contInuous, 

Proof,  He shall  see that (Ml) Implies (M), the rest having been 
proved,  suppose f is weakly continuous, and Mm MX) exists» Then 

I im f(X) s f(sup X)» 

by weak continuity, 
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=f... ofa.rln9 o, truth ^„'xr.i'T. ÄXv^Äfr 
simply  as   stating 

fO.n.O)   =   T fop   a|rnost  avery  ^ 

-"•"--:":,o^t^^^^:::::r.:•;:;::::: - •' -  
t)   A   truth   function  f  adm(ts   ,ndüot|(5n  weak|y   (ff 

f(9.n,0)   =   T   for   9very  n   (n>3) 

b) f adrrits Induct 

mo\ les f(Mln g) ■ T, 

•on strong|y (ff 
f(g.n.o) a(most evQry n lrnp|ie8 f(M(n BJ a ^ 

c) f is weakly continuous Iff 

f(g.n.O) = ffHin g, a,most evepy ^ 

w.r.t.  x^ ?:n,no,"h9anT:n
PattS r'f  J  ,,adn,t8  ,ndüC*'-  »trong.y 

^^rr?;e:^-s'--ionna;,o:(.co?;^^^ x] i9 
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while Min f Is »(Min a),   Assume the  truth values of  BCOjl and 
VytBCyiNbLaCyn) are both T,  Then 

and 
es Ftf(b))=T for any ö, 

F(U)=T, 

FCD) = T Hp 

Therefore we have 

F(f,n,0)»T  every ni0, 

so that, by weak adnl ss I b I I i ty of MOi 

F(M|n f)=T, 

a]   Is  T,     Thus 
Hence the  Induction 

Therefore   the   truth   value  of   BCMln 

BC03-*y(Bty3*faCa(y)3)*BCMln a] Is valid In 0. 

ax lot Is vajId In D. 

necessity: We use the same notations as above, By definition of 
vaMolty any 0-lnstanca of the axiom must be valid, Thoopefore If the 
truth values of BCO] and VyCBCyJ-BCaCy)]) ar« both T» '•••' 
F(f,n,0)eT every n^P, the truth value of BtMln a] Is T,. Namely 
FtMIn f)sT, 

4 9 üeflnltlon, ACx] "admits relativized induction w.r.t, x" Iff 
ACx3 makes the Induction rule sound. Namely, the rule obtained from 
the'schema of Induction rule by substituting ACx] In place of the 
meta-varlable A Is sound. 

4,10 Theorem,  ACx] admits  relativized  Induction 
induction weakly. 

Proof, Me have to prove the soundness of the followlnfl 

P --.. ACO] ACa], P •-•» ACtta)] 

ACx] admits 

rule. 

<a> 
P --* ACMln t3 

• ,, , Cm, 

t3) 
every 

Let v; denote Cl & .,, « Cm where P Is Cl, 
sound Iff (C-»AC03>-CC-»Vy<ACyJI.-ACt(y>3>)*<C*ACMln 
definition. Therefore we shaU Prove for any u, 
this formula, say (E-BC03)-(E^y{BCy^BCb(y) J) J-JE-B 
valid» where b Is an arbitrary varlab|e-free term of th 
t, l.e, (oo*«o)o for some «u, Obvlousjy we have only to 
case that b Is a nape. For, If b Is not a name, there I 
s.t. wb-wb', and the validity can be established easll 
fact and the case that b Is a name, L^t F(x) be the 
determined by BCx], and f be »b, Then the following 

aufficlent, 
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Is valid by 
D-lnstanee of 

CM | n 0 3), Is 
a same type as 
prove for the 

s some name b' 
y using this 
truth fynotlon 
condition  is 



«ü:o:T;^0^;n";?;T:
E'T an8 F,c"T '"»i^ ^"««».T f,r. ny 

.Hö„n«,;,o:: T":rby
b;na^^::,t,o «• "•»"..'«. .b,v. 

F(f,n,0)=T every näß, 

By the assumption that ACx] admits Induction weakly, so do.s BCx3. ., 
that RX) admits Induction weaK|y.  Therefore ' 8< 

r(M|n f)=T, 

4,U Theorem.  ACxJ admits lof Induction if Arxj admit.  .«I-*!«! 
Induction,  where  by  ,cf InduotloS Is m an?C fie ^lit I v i^i'Jili^ 
LCF to Infer ACy.3 fPom y.MIn x. ACO], and AC«.3 -' l!x?ant        

,n 

Proof,  we see that |cf Induction rule Is a derived rule. 

y=Mln^, H -. ACOJ       ACaJ, y^MIn *,   P — ACx(l)3 

 -----.-. <a> Induction y«M|n x, p --.. ACMIn x] 

ysMtn x, p —* ACyJ •aualIty 

4.12 Corol lary. 
weakly. ACx] admits lof Induction If ACxJ admits Induct! on 

j 

\ 

.. 

0 
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Characterization  of Predicates  that  admit  TUed-PoInt 
Induction 

We study what kind of fornujas admit Induction, For the 
reaoaolllty of proofs we shall discuss them in terms of truth 
functions that have one argument designated by x, The theorems below 
can oe so aPP'^d to every Instance of formula1 that the results will 
be regarded as statements about formulas In general by definition 
(see 4,7,) For this purpose logical comblnators below should be 
understood as functions or functlonals whose values are T or F, For 
instance vyF(x#y) denotes the truth function determined by VyACx,y] 
where F(x,y) Is the truth function determined by ACx#y3 In D, The 
relation < Is not a logical symbol of FL.T, but it will be used as a 
preolcate later on |n connection with LCF, 

5,1 Theorem,   The relationship f(x) < g{x) admits Induction strongly 
If f(x) and g(x) are »-continuous. 

Proof,  Let F(x) denote the corresponding truth function, l,e,i 

F(x) = T 

F 

f(x) < g(x}) 
otherwls«, 

Let X be an ascending chain in L. Suppose 

1 im F(X) s T. 

so that 
f(Xn) < g{Xn)  for almost every n, 

Then, b> -jonotonl c I ty of g, 

f(Xn) < g(sup X)  for almost every n, 

Therefore we can choose an ascending subchaln Y of X s,t, 

f{Ym) 5 gcsuo X)  for every m, 

Thus 
SUP f(Y) < g(3Up X). 

But, by --continuity of f» 

f(SUO Y) s sup f(Y), 
so that 

f(SUP Y) < g(sup X). 

By cof Ina|IIty of Y In X, 

SUP Y = SUP X, 
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Thus 

i.e. 
f(SUP x) £ g(sup X)» 

FO.jP X) s T. 

5 2 Remark.   f(x) < g(¥)i f and g being contlnuou»#  Is not always 
w^Kjy continuous,  (the  fact that  It  Is "«* -JJ"*•""J";.J;,n; 
well-Known.) Let N' ba  the natural  numbers with the  Infinity 
(omega) ordered In the usual sense. Define f, gl N'-»N' by 

f<x> s x+1» 
«J(x) a x, 

Let X bo s.t. 

Xn s n each n s.t, lSn<-, 

Then 

but 
MXn) » F each m 

F"(8U0 X) s T. 

5 3 Theorem,  Let f bt an —continuous function  Into a dlsorate 
littlce L'. c an element of L.  Then the relationship 

f(x)=c 

ts weakly continuous. 

Proof,  Let X be an ascending chain In the domain of f, By  theorem 

5,1, t(xn)=c almost every n Implies f(sup X)«c.  suppose 

f{Xn)^c       almost every n, 

We have to prove 

f{SuD X)*c 

Uet Yn denote f(Xn) for each n,  By monotonlclty of f, 

asYlS ... Yn<Y<n*l)i ... Sb, 

where b denotes SUP Y,  Y must have at least an accumulating point, 
for, otherwise, we could choose an ascending chain Z that Is a subset 

of Y s.t, 

a<«il< ... <in<Z(n*l)< ... <b, 

which contradicts the discreteness of L'.  By monotonlclty suoh an 
accurrulatlng point Is unique and will be denoted by d,  Thus 
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Yn"d   almost «vtry nt 

By tht supposition 

By n-.onotonlolty again, d Is the maximum sjtmont of Y. so that 

dssup f(X), 

By --continuity» 

f(sup X)=SUD f(X) 
«d 

Thus 
f(SuP X>^c, 

5.4 Herrark,  In th. above proof we used "discreteness- to mean there 

Is no ascending chain s.t, 

a<xi<X2< ,,, <Xn< .1. <b» 

for any a and b, 

5.5 Theorem,  a) r(X)vG(x) admits Induction strongly If Hx) and C(x) 

b),F(x>vG(x) Is weakly continuous If F(x) and G«x)  are, 

Proof,  a)  Suppose 

I |m9up r(X)vG(X) = T, 

I lmsup PCX) a T 

Iimsup G(X) » T, 

r{suP X> = T 

GOUP X> a T 

by strong admlsslbI I Ity,  Thus 

F(suP X)vG(sup X) ■ T, 

b)  By Meak continuity. 

F(SUP X) ■ F(Xn> B a 

and 

{   Cf, 4,3,0(111) ) 

Then either 

or 

so that either 

or 

G{SUP X> ■ C(Xn> s b 

for ajmost every n 

for almost every n, 
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for some a and ö,  Therefore 

r(Xn)vG<Xn) a avb 

At the same time, 

F{8UB X)vG(sup X) = avb. 

for almost every n, 

5,6 Remark, a) F(x)vG(x) does not necessarily admit Induction  weakly 
even If Rx) and G(x) do.  We conslaer N' (see remark 5,2) again. L«t 

and 

r(x) = T 

F 

G(x) a T 
F 

X30; 

0<xS-> 

0<X<-J 
xs0 or xs-, 

Then F and G admit Induction weakly, and 

F(n)vG{ni = T  for every r\>B, 

F{-)vG(-) = F, 
But 

b) FU)VG(X) does not necessarily admit induction weakjy even jf one 
of F(x) and C(x) is weakly continuous and the other admits Induction 
weakly. For, In fact» F(x) In the above example Is we«k|y continuous, 

5,7  Theorem.   a) F(x)«G(x,> admits Induction weakly jf F(io and C(x> 
do, 
b)  F{x)&G(x) admits Induction strongly If F(x) and C(x> do, 
c>  F(x)«G(x) Is weak|y continuous If F{x) and C(x) ar«. 

Proof»  left 'c» the readoi". 

5.8 Theorem,  -F(x) Is weakly continuous If F(x) Is, 

Proof, Let a denote the truth value F(SUD X), By weak continuity» 

F(Xn) = a      for almost every n, 

let   b denote the truth value ^a, Then 

-F(Xn) 8 b     for almost every n, 
Besides, 

-.F(3up X) = b, 

5.9 Remark, a) -F(*) does not necessarily admit Induction weakjy even 
If FU) admits induction strongly. Let p<x) be the truth function 
determined by x<- & -<x, which is equivalent to x«-, In N't Thtn 
F(x) admits Induction strongly because of theorems 5,1 and 5,7(b)i 
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Let Xn ba th« n-th natural number for »*oh n,  Then 

-.F(Xn) ■ T     for nj;0, 

-Ftsup X) = 'r(-> s F. 
But 

Thus -Mx) does not admit Induction weakly, 
b) By the above arOumenti the negation of a formula of LCF does not 
admit Induction weakly In general. 

5,10 Theorem,  If F(x) and -Fl*y  both admit Induction strongly then 
F(x) Is weakly continuous, 

Proof, We prove that F(X) Is convergent for any ascending chain X, 
The ease that 

IImguo F<X) 8 F 

Is trivial,  Suopoeo 

I Imsup F(X> ■ T, 
We prove 

I|m|nf F(X) « T 

by contradiction,  Assume 

I |m|nf F(X> » F, 

so that 
I Imsup *F(X) ■ T, 

By strong admlsslbi11ty« 

-F(8up X) s T, 
l.e, 

r(suD X) » F. 

Thus  F(x)   does  not  admit   Induction strongly»  which  is a 
contradlotion. 

• 

5.11 Theorem, a) FU^CU) admits Induction strongly If F(x) Is 
weakly continuous and C(X) admits induction strongly, 
b)  F(xj*G(x) Is weak|y continuous if FOr) and C(x) are, 

Proof, F(x)*G(x) is a tautology of -F(x)vG(x)# so that theorems 5,8 
and 5,5 suffIce, 

5.12 Remark, F(x)-*c(x) does not necessarily admit Induction weakly 
even If F(x) admits Induction strongly and G(x) Is »-centInueuSi Let 
G(x) be f, l,o,, the Identically false truth function. Then F(x)*G(x) 
Is a tautology of „F(x),  Consider the example of remark 5,9, 
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Hereafter y Is used to Indicate the argument Instead of x, 

5,13 Theorem, a) Vxr(x,y) admits Induction weakly w.nt, y If F<x,y) 
does. 
b>  VxF{x,y) admits Induction strongly w.r,t. y If r(x»y) does, 

Proof,  a)  Suppose 

and 

Then 

• n«* 

VxF(x,0) ■ T 

VxKx.Yn) s T 

F(a,0) B T 

r(a,Yn) = T 

for every n, 

for evePy n, 

for anv ^,  Therefore, by weak admlss10 I I Ity. 

rta.suo Y) a T for any a. 
Thus 

YxF(x,suo Y) i T. 

b)  Suppose 

Then 

IImsup VxF(xiy) = T, 

I Imsup F(a,Yn) s T     each a. 

By strong adm;ssibiI Ity. 

F(a,sup Y) = T        each a. 

VxFCx.sup Y) s T, 
Thus 

5,14 Reirark, a) VxF(x,y) Is not necessarily weakly conttnuous even If 
F(x.y) Is. Let F be s.t, 

F(x,y) s T 
F 

x<- and x<y, or xs-j 
otherwise, 

Then F Is weakly continuous In y» for 

Mm F(a,Yn) = F(a,-) s T       each a<-, 
and 

F{-,Yn) s F(-,-) s T   for every n, 

for any ascending chain Yn In N»,  Moreover» 

VxF(x,Yn) = F  for every n, 
so that 

(|m VXF(X,Y) e P. 

0 

Q 

/ 
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But 
VxF(x,sup Y) t VxF(x,-) s T, 

b) vxFU,y> Is not necessarily weakly continuous even If FUiy) Is 

-continuous In y. For nx,y) defined above Is —continuous In y, 
because It is not only weaKly continuous but also monotone UT. 

theorem 3,6, > 

5.15  Theorem,   a)  3xr(x.y)  admits Induction strongly If r(¥,y) Is 

monotone in y, ...^  ^u..•#«.. 
b)  JxFtx.y)  Is monotone and weaKly continuous «and therefore 
— continuous,  See theorem 3,6) If F<x»y) Is. 

Proof, a)  Suppose 

I In 3xF{x,Y) s T» 

so that for some a and M 

F(a#YM) * T, 

F(a(SUP Y> = T. 

3xF(x,suP Y) = T. 

3xF(x,suo Y) s liminf JxF(x,Y) s jlmsup 3xF(x,Y) 

for each ascending chain Y by case analysis,  (M  Suppose 

IInsup 3xF(x,Y) = T, 

F(a,YM) '   T    for some a and M, 

FO^Yn) '   T    M<n, 

SxFCXjYn) = T MSn, 

I In 3XF(X,Y) = T. 

Also by monotonIcI*:yi F(a,YMy s T Imojles 

F(a,syp Y) s T» 

so that 
3xF(x,suP Y) ■ T. 

(i!)  Suppose 

By ironotonlc i ty» 

Thus 

b)  ue prove 

so t^at 

By iTonotonl ci ty» 

so that 

I ,e, * 

I.e.. 

Iinsup 3xF(x,Y) = F, 

I In 3xF(x,Y) s F. 

Then tnere exists M(a) for each a. s.ti 
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f{a,YM(a)), 

80 that, by monoton|city, 

F"<a'Yn) s r 'or «ny a and n, 

jxhix,rj = T,) Thus 

11" F{a,Y)   z  r f0r  any a, 

so  that  by weak  continuity, 

na.aup  Y)   r  F for  any tt 

3xF(x,sup Y ) = F, 

( Im 

Therefore 

?;1^y
R•?a;K•  a) 3*nx,y) Is not neceasarlly weakly eontlnuoua «van 

vz(z<—z<y), 

Then F(x,y) is monotone In y, and 

r(x'n) s F     for every n ani any x, 

3xF(x,n) = F f0r «very n, 

3xF(x,-) s T, 

r(*,-) B T, 

b)  3xF(x,y)  is  net necessarily weakly continuous even |f r(x,y) I. 
monotone and admit Mductlon strongly,  Let 

so that 

But 

because 

Namely, 

GCx.y) r T 
F 

ysx<-j 
otherwise. 

5(x,y) = *F(x,y), 

F(x,y)  being the  truth  function described In remark 5.14 so that 
C(x,y) is weakly continuous In y by theorem 5.8.  But 

and 
3xG(x,n) a T 

3xG(x,-) c F. 

every n, 

• 

• 
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Syntax of Formulas that admit Induction 

6,1 Tables of Inheritance of admissIbI I Ity 

We summarize the Inheritance of   admlssl 
the tables so that they can be checKed by machl 

blIIty of Induction 
nes easi jy. 

In 

FLT for 
of Indue 
accept 
we would 
that ad 
Inductlv 
that "ad 
to admit 
Inductlo 
cases I I 

Thesa tabl 

technlca I 
tIon Is an 
a  formal 
like to u 

mits indue 
• defIni t 
m|t Induct 
Induct I on 

n weakly 
sted In li 

es 

( I 
In 

Sys 
se 
tlo 
1 on 
I on 
sy 
w, 
se 

shall be regarded as a par 
oglcaU reasons, since 
formal concept that Is not 
tem described |n terms of 
the Induction axiom, or ru 

Instead we reg 
an affective d 
ly".   Namely 
Iff  ACx]  is 

ng  only these 
base step of 

n weakly, 
, anü hence 
syntactical 

ntactlea I ly 
r,t,  x  usl 
rvlng as the 

t of the postulates of 
the weak admlsslbl I Ity 
effective, we cannot 

that concept, although 
le, for every formula 
ard these tables as an 
sflnltlon, of formulas 
we cat I a formula AC ] 

concluded to admit 
tables, the primitiv« 
Inductive definition. 

We add the following definition for Practical Purposes, 

Definition, A formula A Is said to he "constant w.r.t, x" Iff »A 
does not depend on x, A term t is an "lof term" Iff all the 
constants and variables occurring In t are of continuous types. A 
fortrula of the form t<u where t and u are lef terms Is called an "|cf 

Obviously a sufficient condition for A to be constant w r t 
x  Is that x does not occur free  In A.  Proofs conoernlni {hi 
Inheritance of admisstbI I Ity related to this condition are  left to 
the reader, 

U, The following conditions are hierarchical In the sense that the 
lower are the stronger conditions, 

(prImitivs cases) 

i A admits Induct on weakly,  | i 

A admits Induction strongly,! t5u  (t and u are lef terms) 

A Is weakly continuous, i t=0, t=TRUE, t^FALSE 
i (t Is an lef term) 

A is constant. x does not occur free In A, 

CD     A admits relativized induction and lef Induction w.r.t. 
A acrrlts induction weakly w.r.t, x, If 
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<l,)   A 's —continuous Iff A Is weakly continuous and monotone, 
(111)  A admits Induction weekly w,p,t, x If A !• monotone w,ptt, x, 

12,  Table for &,   v, and *, 

If A anc B satisfy the conditions stated In the first column 
and the first row, respectively, then AfiB, AVB, and A-.B satisfy the 
conditions shown in the corresponding Places. 

A  \ ü  ladn, weak, ladm, str.  Iweak. cont,lconst, 

\op| I I I j 
adm.    !«ladm, weak, ladm, weak, jadm, weak, ladm, weak, j 
teeaK'   lv| x I x | x ladm, weak, I 

l",' * ' * I x ladm, weak, I 

ladm, IS|admt weak, ladm, str, 
Istr. |v| x ladm, str. 
I        M    x    I    x 

adm, str, 
adm, str, 

x 

ladm, str, 
ladm, str. 
ladm, str. 

Iweak. 
Icont. 
1 

läjadm. 
|v| 
l-l 

weak, 
X 
X 

ladm, 
ladm, 
ladm. 

str. 
str. 
str. 

Iweak. 
1 weak. 
Iweak. 

cont,Iweak, 
cont.Iweak, 
cont,Iweak, 

oont,1 
oont,1 
cont,1 

const, Ifiladm, weak, ladm, str. 
Ivladm, weak, l&dm, str. 
Mad"', weak, ladm, str. 

I weak, cont,Iconst, 
Iweak. cont.lconst, 
Iweak. cont.lconst, 

13.  Table for •«, V, and 3, 

All the conditions ar« w,r,t, x. 
If x and y are Identical then VyA and 3yA are constant w,r,t, x. 

-A VyA 3yA 

I In general IA: monotom 

adm, weak. ladm, weak, ladn, str, 

adm, str. adm, str. adm, str. 

weak. cont.Iweak. cont,ladm, str. weak, oont, 

const. const. const, Iconst. I const. 
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6,2 Extmplt of formulft thtt adrnlti Induction 

Vxr(x,y) is wftakjy continuous If r(x#y) Is «nt|-monoton« and 
admit« Induction stronoly w.r.t, y, 

For, vxr(x,y) is a tautology of -Ox-FU.y), SUPDOS« r(x,y) 
Is antl-monotona »nd admits Induction strongly w,r,t» V, «FCxiy) Is 
monotone, so that •.r<xly> admits induction strongly by thsoram 5,4a, 
Than -,F(x,y) Is wtakly continuous by theorem 4,8, so that 3xr(X|y) Is 
waakly continuous by thoortm 5,4b, Thus ,3xF<x,y) Is waakly 
continuous by thaorcm 4,6,  ($•« tables of 6.1) 

w« can check t^is rasult by a d|r«ct proof as follows, 

Proof, Cas« I) Supooso 

llmsup Vxr(x.Y) e F, |,s., Mm VxF(x,Y) « F, 

Than thsp« exists M s,t, 

VxF(x,YH> ■ F, 

so that thar« I« som« a s,ti 

F{a,YM) « F, 

By antl-monotonIcIty, 

F(a,sup Y> s r, 
so that 

VxF(x,SUP Y) a F, 

Cas« I I) Suppose 

IImsup Vxr(x,Y> = T, 
Th«n» 

I Imsup F(e,Y> ■ T      each a» 

so that 

F{a,Yn) » T    for «v«py n, each a, 

I|m F(a,Y) « T, 
I.a. 

(Otherewlse llmsup F(a,Y)  « r by »ntI-monotonIoIty,)  By strong 
admlsslblI Ity, 

so that 
F(B,SUP Y) ■ T 

YXF(X,SUP Y) B T, 

•ach a. 
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Translation of LCF Into Flrst-Order Logic of TyD«d Thtorlta 

7,1 AxlomatIzatIon 

In order  to axlomatlze LCF»  first we need to extend the 
syntax of terms so as to Include X-expresslons as follows, 

B5, If t is an oro-term and x is a Po-var jaD I e, then Xxt Is a 
(Po-'O'Oo-term,  Any occurrence of x In xxt Is not free, 

The corresponding Interpretation Is as follows, 

D5, If t Is Xxucx] and x Is a Mo-variable, uCa] must be & closed 
«o-term for each f3o.name a so that * CuCa] )(Da|0, for some «0, We |et 
•t be the function which sends each naeDHÖ onto »(uCa]), Such a 
function is known to be cent InuousC10, 7], 

RenarK, The proof of continuity of the functions represented by 

X-expressions» namely the terms Involving the operator X» requires 
Induction on the structure of terms. The case that sup Do's do not 
exist in general has been treated by R, Mllner, 

we introduce an ord<r 
Bo-constants 3i TRUr» and FALSE, 
an (a»«)-pradicate < for each «, 

ÜCÖoJ consists of three 
I ncotrparab I e,   Hereafter   we 
Bo-constant and the trutn value 

a(t«uiv)i namely ((3(t)) 
and is written as t3u,v usually, 
0. TRUE, and FALSE» respectively 
This function ts cont|nuousC103, 

x<y represents the order 

sections, mathimatioally» Intu 
••defineo'' more than or as much a 
and y are functions, this means 

ed base  type  denoted by Boi three 
and. a {Bo"*0o-»«0"»«o)o-con8tant » and 

elements, TRUE* and 
use the same symbol 
represented by It, 

FALSE* being 
to  denote a 

(u)>(v) reads "If t then u else v" 
we let a3b,c be 0* b, and c» if a Is 

• for each afBo* b€Dao. and 0*0*0, 

relation discussed In the previous 

Itlvely, however, xsy means that y Is 
s x, XSQ read "x Is undefined," If x 
y is an extension of x as function. 

We give the following non-|ogIoa| axioms, An arbitrary 
terrr with voids can be substituted In place of tC ].i provided that 
the variable designated by x does not occur free In that term, tcx] 
and t[yj denote the terms obtained from it by substituting arbitrary 
varlaPles designated by x and y, respectively, In place of its voids, 
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Non|oglca| axlons 

raflexlvlty,   xsx. 

antisymiretry.        x<y  &   y<x   *  xsy. 

x = y  -•   x<y, 

transitivity.   x<y « y<z - x<z. 

extenslonalIty. 

x<y -  x(z)<y(z), 

mo notonlcity.   x<y - z(x)<z(y) 
z        must        &• 
«o-varlablo. 

an 

mlnirral   elements, 

0<x, 

O(x)<0, 

trutH values, xsO v xsTRUL v x=rALSE 

-OsTRUE. 

-0=FALSE. 

-.TRUEaFÄLSE, 

x   mu»t   &• 
Bo-varlab ja, 

cona i 11 one Is, Osx,y = 0, 

TRU^^x.y s x. 

FALSEax^y = y, 

X-converslon,   (XxtCxD)(y)stCy]. 
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7,2 Adequacy 

We  need  to  s 
adequately expresse 0 see that all the Inference rules In LCF can be 

d l:,T  S:!!!nt.fa'cu,us '" the fern, of th«^ 

nt 
01 

----- -• ■■*•• i »M ' w<> ■ H^ivma, 

Jl,  abstraction ruje (LCD, 

tta] 5 uta] 

  <a> 

Der|vat|ont 

tCa_J S uCa] 

"xxtcxjürrxxücxjur* X-converslon   (and  equality) 

Vym^üiMw'rü^c^Hyn"  <a>           v-,Production 

 XKUxaTx^uJ                     extenslonal Ity 

J2,  function rule (LCF:,. 

Xxy(x) 3 y 

Der I vatlon, 

(Xxy{x))(z) = y(z) X-converslon 

mux"wx'n;zT:';^r <z>    v-,"deduction 

 Xx'wx")":';         «xtenslonal Ity 

J3,  cases rule (LCr), 

(t=0>   (tsTRUE)   (tsFALSE) 
A        A A 

A 
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Der i vat I on, 
(t = U)   (t = TRU£>   (WALSE) 

t = 0 v tsTKUE. v t = FALSE    A A A 
v-eiimlnation 

(twlot) 

J4, Inouctlon pule (LCD, It suffices to show that any conjunction 
of' lof awffs admits Induction syntactically In the sense of section 
6,1, for LCF is a formal system that carries out pelatlvl*«d 
deduction for these sentences. Each Icf awff admits Induction 
strongly w.r.t, any variable (table U, 6,1) subject to the type 
comformjty, So does any conjunction of them (table 12, 6,1), 

7,3  Lxample taken from proof of compiler correctness 

The following example Is taken from an FLT-Mke proof of 
McCarthy-painter's theoremC53. The proof of this theorem In LCF Is 
discussed In [8] and [13], 

we presuppose there are tnree types called lanouagel, 

language?, and the meaning space. These need not be base types, In 
particular the meaning space can be the type (states)-»(state8), 
Namely the meaning space Is the set of Partial functions of (states) 
Into itself, A conceptual compiler carries out a translation of 
janguagel Into languages, an expression x In languagei being mapped 
onto obj(x), We need not assume continuity of the meaning space and 
function obj for the present argument, which is, howeveri not an 
Important point, we use the following constants» each of them being 
either an Individual constant or a function in the usual sense, The 
asterisked constants are assumed to have been given appropriate 

ax I oirs, 

type comment 

( |anquagel-*üo)o lsConst(9)»TRUE, 
(languagel*ao)o Isvar{a)sTRUE, 
(languagel-do>o Isexo({8+a)*(9+b>)«TRUE. 
( languagei* I anguageDo      argK (8+a)*(9*b) )«8*a, 
(language!«languagel)o      arg2(8+a)sa, 
languagei** language? 
Ianguagel^meanIng space 
languageS^meanlng space 

We use a (languagei,Ianguage2>-predIcate Correct(x,y) to mean y Is a 
correct  object  program  for  expression  x,   Correct(x,y)  Is  not 
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continuous In general, because It Is usually defined by an axiom like 

(Ax•1, VxVy(Correct(x»y) = meanl<x)»naan2(y)), (•) 

The function isexo is defined by the following axiom. 

<A*«2) IsexoaMln Xf Xx(Isconst(x)3TRUEi <Isvar<x)»TRUE» 

(f(arfll(x))3<f(arg2(x>)3TRuE,FAUsE)»rALsE))>. 

The tneorern we want to prove Is 

(1) Vx( lsexp(x) = TRUE •» Correct(XiobJ(x))), 

Correct(x,obj(x)) |9# however, not sufficient as an Induction 
hypothesis In general, so that we prove first a formula of the form 

<2) Vx( |sexp{x)sTRUE •• A), 

usually, where A IS the conjunction of a certain generalization of 
Correct(x,obJ(x)) and additional conditions peculiar to each 
compiling algorithm, More concretely, we shall consider a compiler 
which works with a counter, n, Indicating that the addresses whose 
mneironlc names are TSd), ,,, , TS{n) are occupied as tamporary 
storages, we define the following constants, the last three ralatad 
to the loading or allocation, The set of integers, or addresses. Is 
a base type, varsno(x) Is the number of distinct variables occurring 
In x,  varno(z,x) denotes some numbering of such variables, 

constant type comment 

compl •   ( language!, I ntegers)-* Ianguage2 
TS I ntegeps-« Integers 
v«rn0 *  ( languagel, Ianguagel)-»integer8  varno(a, {8*a) + (9*b) )■!, 
varsno *   languagel-Integers vapsnoc(8*a)*(9*b))«2, 
loc ( languaael, languagel )•» Integers 

In this case, obj(x) |s deflnd by the following axiom. 

(Ax,3) Vx(obJ(x)scompl(x,«)), 

A typ I ca I form of A Is 

(3)    Vn<n>0 -• Correct<x,comp| (x,n)) « Unaf f ected(x, n, comp I (x, n))), 

where Unaffected Is a ( languaflel,Integers, I anguage2)-PredIcate s,t, 
Unaffected(x,n,y) means the object program y does not destroy the 
contents of the storages corresponding to the program variables 
occurring In the source program x or any of TS(1>, ,,, , TS(n), 

•)  The  reader  may recall that = means logical equivalence, while a 
equal Ity In the strong sense, that Is, = In LCF, 
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If we make the addresses absolute by the below axiom,  which 
corresponds to a particular  loading obvjoustyi the object program 
beconres as fig, 1 tielo*. Cocur(z»x) reads z  occurs In x, 

(Ax, 4)       VzVxtlsvar(2)sTPUE>0ccurUiX)-ioe(z,x)Bvarno(ZiX>>, 

VxVn(|ocCTS(n))3varsno(x)+n). 

compl((8*a)*(9+b>,n) memory map 

(Instruction) 

LI Ö 

*Ü0 1 
STo n*3 
LI V 
AUO 2 
src n*4 
Ll n+3 
AÜU nt-4 

(mnemonIcs) 

TS(n+i) 

TS<n+2) 
TS(n*l) 
TS(n+2) 

Let nsK to get ObJ n8+a) + (9 + b) ) 

13 

II 
12 
I  
13 

ln*2 

n+3 
n+4 

I 

accumulator 

a 
b 

iTsa) 
, i • • • 

ITS(n) 

ITS<n*l) 
|TS(n+2) 

f|g, 1 Example of objcet program 
and memory nap 

Let ACx] denote (3) hereafter, we note that neither Isexp 
nor P occurs free in ACxJ, Theni the formula (2) admits jcf 
induction w.r.t, "isexp" as"follows, 

lsexp{x)sTRUE 

A(x) 

isexp(x)=TRUE * ACxJ 

Vx( isexD('<)::TRuE *   AC« J) 

weak. cent. w.r,t, Isexpi 

const, w.r.t» Isexp; 

weak. cent, w.r.t, isexpi 

adm, str, w.r.t. Isexp. 

(See tables In section 6.1.) 
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Thus we can Infer (2) from (4) and (5) below, 

(4) Vx(0(x)=TRUE - ACxiJ), 

(5) yx(f(x)sTPUr * ACx]) -- 

Vx( { Isconst(x)3TRUE., ( I sv«r (x)9TRUE, 
(f (argKxMotf (ari2(x))aTRUE< 

FALSE).FALSE)))=TRUE -• ACx]), 

we can Improve the readability by the following 
consideration, Let p be an («-»Bo )-t,erm. Than we let p and "0 Stand 
for tne formulas p=TRUE and psFALSE, respectively, This causes no 
oomfuslon because of the syntax we employed,  Obviously 

p V "p 

is not valid, wnl|e pv-p Is. We notice the relationship 

(p=q»r) i O&Q  v -pÄr» (•) 

which Is provable in FLTi since this formula is an abbreviation of 

(p3q.r)*TRUE = p=TRUE S   a=TRUE v psFALSE 4 rsTRUE. 

Thus we can rewrite (4) and (?) as follows. 

(4')    Vx(0(x) - ACx]), 

(5' )    Vx(f (x) - ACx]) -•• 
vx(lsconst(x)visvar(x>v-iscons't<x)«-|svar(x) 

& f(arfll(x)i« f(arg2(x)) * ACx]), 

It must be noted that there are some substitutes |n LCF for 
forrrulas like (l)-(4)» though these formulas are not allowed as 
legitimate formulas In It and the Interpretation becomes dlffsrsnt. 
By the deduction t^eorer In first-order logic we can also exoress the 
sentence (5') by a formula of FLT» replacing -«• by * and binding f by 
universal quantifier, obtaining 

(5" )   Vf (Vx(f (x) - ACx]) ■• 
Vx( iscontst(x) v |svar<x) v ■'i3Const<x) 5 
"Isvar(x) &  f(argl(x)) &  f(arg2(x)) - ACx])), 

For such a formula there seem to be no natural  substitutes  In the 
forir of LCF formulas, 

•) It is a little Interesting» and also useful» that this old 
relationship still holds In a calculus that includes ths undefined 
truth value,  See, e,g,. 122, 
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Discussions 

The wplter has been motivated toward the study described Jn 
this oaoer through an attempt to translate his formal system 
representing the equivalence o' Algol-like statementC2. 3] Into LCF. 
For that purpose having some predicate caloulus-lIke facility seems 
to be essential, for we need to express Implication between strong 
eaulvalence In the form of formula, 

From the writer's point of vjew, the following are among the 
possible advantages of having some predicate ealculus-1 Ike things 
within logic for computable functions, 

1, (hurran engineering) In not • fsw eases, the conventional jogleal 
operators make the wrltlng and understanding of descriptions easier. 
Besides, many people are famljlar with expressions and derivation In 
oredlcate calculus» especially, of flrst-order, 

2, (underlying theories) in the practical field of application of 
such a logic, for Instance proving correctness of comollersi w« have 
to handle underlying theories whose representations In erodleate 
calculus seem to be natural, I Ike elementary set theory, We do not 
care If some of the sets Involved In our proof are not computable or 
continuous, even If they might be In fact computable, There i\r« »iso 
theories of equivalence and correctness of programs whleh are r«latod 
to predicate calculus, 

3, (meta-theorems) There will be many facts about the objects of LCF 
that can be stated onjy In the form of meta-theorems of LCF» while 
significant portion of them could be stated as theorems In an 
extended logic, Then handling derived rules and applying already 
Proved theorems will become more convenient. 

Obviously these desirable properties will not be obtained 
before considerable experiments. Moreover there must be some 
comoromlse, For Instance, |f we use entire classical predicate 
calculus as in the present paper, we are out of the LCF.||ke world 
that consists of so|e|y continuous functions» losing some neatness of 
the fortrallsm and relative simplicity of Implementation, Employing 
second or higher order Predicate oaloulus might give ut mere 
complexity as well as power. 

It roust be noted that J. McCarthy^] suggested that In seme 
generalization of Scott's logic using p-edlcate calculus we should be 
at}le to Prove the continuity of functions, It seems thjt FLT Is 
capable of doing that In spite of the limitation thtt no ored'ca*« 
variables are allowed, for wa have Quantifiers ranging over tyoed 
sets in effect, A fixed-point Induction based mainly on monotontelty 
within second-order Predicate calculus has been discussed by 0. 
ParkC93. 
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